8.3: Unit Vectors and Direction Angle

Unit Vector: the vector with a magnitude of one

Example: Determine \(|\vec{u}| \) if \(\vec{u} = (4, 3) \)

Solution:

\[
|\vec{u}| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5
\]

Divide our components by the magnitude of 5

\[
\frac{\vec{u}}{5} = \left(\frac{4}{5}, \frac{3}{5} \right)
\]

the scalar multiple of \(\frac{1}{5} \)

\[
\left| \frac{\vec{u}}{5} \right| = \sqrt{\left(\frac{4}{5} \right)^2 + \left(\frac{3}{5} \right)^2} = \sqrt{\frac{16}{25} + \frac{9}{25}} = \sqrt{\frac{25}{25}} = 1
\]

Example: Determine the angle in standard position of the vector
\[\vec{V} = (6, 5) \]

Solution

Draw our vector \(\vec{V} \)

\[\tan \theta = \frac{5}{6} \]

\[\theta = \tan^{-1} \left(\frac{5}{6} \right) \]

\[\theta = 39.81^\circ \text{ or } 0.695 \text{ radians} \]

Example: if \(\vec{V} = (4, 5) \) and \(\vec{U} = (3, -4) \), what is the angle in standard position of \(\vec{V} + 2\vec{U} \)

Solution

\[\tan \theta = \frac{3}{10} \]
$\theta = 16.7^\circ$

$\theta = -16.7^\circ$ or 343.3°

Force: a direction and magnitude (angle) (Newtons)

Example: A 80 N box is on a frictionless floor, what force is needed to move the box if the direction applied is completely horizontal?

Solution

it will take any minute force because it is a frictionless environment

read example #6 p.266

Example: Determine the force need to move an 80 N box up on an incline of 20° on a frictionless surface?
\[\sin 20^\circ = \frac{x}{80} \]
\[80 \sin 20^\circ = x \]
\[27.4 \, N = x \]