Position: measure of how far a particle is from a fixed point (usually the origin) and its direction relative to the fixed point.

Distance: measure of how far a particle is away from a fixed point (usually the origin) and does not indicate direction. Distance is the magnitude of position and is always positive.

Displacement: the change in position. The displacement of an object may be positive, negative or zero depending on its motion.

- The velocity of a particle \(v = \frac{ds}{dt} \), is the measure of how fast an object is moving and its direction of motion relative to a fixed point.

- The speed of a particle is measure of how fast an object is moving and does not indicate direction.

- The acceleration, \(a = \frac{dv}{dt} = \frac{d^2s}{dt^2} \), of a particle is a measure of how fast its velocity is changing.

Example: The position of a particle is given by the function \(s(t) = -t^2 + 6t \). Where \(s \) is cm and \(t \) is seconds.

a) find the particle's position at times: \(t = 0, 1, 3 \) and 6

Solution

When \(t = 0 \), \(s(0) = -(0)^2 + 6(0) = 0 \)

When \(t = 1 \), \(s(1) = -(1)^2 + 6(1) = -1 + 6 = 5 \)

When \(t = 3 \), \(s(3) = -(3)^2 + 6(3) = -9 + 18 = 9 \)

When \(t = 6 \), \(s(6) = -(6)^2 + 6(6) = -36 + 36 = 0 \)
Graph
\[s(t) = -t^2 + 6t \]
\[s(t) = t(-t + 6) \]
\[x\text{-intercepts} \Rightarrow y = 0 \]
\[0 = t(-t + 6) \]
\[t = 0 \quad \text{or} \quad t = 6 \]

\[S \]

\[k \]

Determine the particle's displacement for the following intervals: \(0 \leq t \leq 1 \), \(1 \leq t \leq 3 \)
\(3 \leq t \leq 6 \) and \(0 \leq t \leq 6 \)

Solution

displacement \(0 \leq t \leq 1 \): \(S(1) - S(0) \)
\[5 - 0 = 5 \text{ cm} \]

\(1 \leq t \leq 3 \): \(S(3) - S(1) \)
\[9 - 5 = 4 \text{ cm} \]

\(3 \leq t \leq 6 \): \(S(6) - S(3) \)
\[0 - 9 = -9 \text{ cm} \]
\[0 \leq t \leq 6 : \quad s(6) - s(0) \]
\[0 - 0 = 0 \text{ cm} \]

Determine total distance travelled

- distance is an absolute value

\[0 \leq t \leq 1 : \quad |s(1) - s(0)| = |5| = 5 \]
\[1 \leq t \leq 3 : \quad |s(3) - s(1)| = |4| = 4 \]
\[3 \leq t \leq 6 : \quad |s(6) - s(3)| = |-9| = 9 \]

Total distance is 18 cm

Key point: We need to know when our derivative equals zero, because that indicates a change of direction.

* Total distance travelled from \(t_1 \) to \(t_2 \):

\[\text{distance} = \int_{t_1}^{t_2} |v(t)| \, dt \]

Position function \(\rightarrow \) Velocity function \(\rightarrow \) Acceleration function

Use the distance formula to determine the total distance travelled of our particle.
in the example above.